胡江涛 Jiangtao Hu-教师-深大官网-深大官网

简介

胡江涛,深圳大学化学与环境工程学院副教授,研究生导师。2018年获得北京大学理学博士学位,师从潘锋教授;2018-2021年在美国西北太平洋国家实验室从事博士后研究,合作导师为Jie Xiao教授。2021年12月加入深圳大学,在化学与环境工程学院石墨烯及其复合材料研究中心开展新能源材料研发及应用研究工作。胡江涛教授长期致力于新型二次电池关键材料及电极结构的研究,研究领域包括正极材料的设计开发、储存机制探索及电化学性能优化;负极材料(石墨、硅、锂金属等)的稳定性及脱嵌机制研究;新型电解质(水系、有机系)的开发及海洋(盐湖、废旧锂电池等)锂资源的提取和再利用等。曾在国际会议上给予口头报告数次,担任Joule,Nano Energy,Journal of Power Sources等杂志的审稿人。以第一作者(含共同一作)发表SCI论文28篇,包括Joule 1篇、Advanced Energy Materials 3篇、ACS Energy Letters 1篇、Nano Letters 2篇、Energy Storage Materials 1篇和Nano Energy 3篇,累计合作发表SCI论文68篇,总引用2300余次,H因子25;已获中国授权发明专利2项,美国发明专利1项。

学习经历

2009.9-2013.7  河南大学    学士

2013.9-2018.7  北京大学工学院力学先(进材料与力学)专业    博士

工作经历

2018.10-2021.11 美国西北太平洋国家实验室  博士后

2021.12-至今  深圳大学化学与环境工程学院  副教授

主持和参与的主要科研项目

1. 高性能锂电池磷酸铁锰锂纳米材料的研发及其结构 与性能相关性研究,国家自然科学基金面上项目,项目编号:516720122017.01-2020.12,62万元,参与

2. 金属氧化物半导体/碳纳米薄膜复合对电极 的研发及其在染料敏化太阳能电池中的应用,国家自然科学基金委员会青年科学基金项目,项目编号:51602010,2017.01-2019.12, 20万元,参与

3. Cathode and Cathode/electrolyte Interface (正极和正极/电解液界面研究),US Department of Energy Applied battery research(美国能源部电池应用研究),项目编号:DE-LC-0 00L053,2018.09 – 2021.09, 924万元,参与


发明专利

1. 潘锋,李文,林原,胡江涛。一种测量电极活性材料电化学动力学参数的方法。发明专利,中国, CN106053583A2016

2. Feng Pan, DUAN Yandong, Bingkai Zhang, Jiaxin Zheng, Jiangtao Hu, LIU Tongchao, Hua Guo, Yuan Lin, Wen Li, SONG Xiaohe,ZHUO Zengqing, Yidong Liu. Supercapacity lithium ion battery cathode material, preparation method therefor and application thereof. US, 11316160, 2022。

代表性论文

(1) Hu, J., Y. Jiang, L. Li, Z. Yu, C. Wang, G. Gill, J. Xiao, R.J. Cavagnaro, L.-J. Kuo, R.M. Asmussen, and D. Lu, A Lithium Feedstock Pathway: Coupled Electrochemical Extraction and Direct Battery Materials Manufacturing. ACS Energy Letters 2022, 2420-2427.

(2) Hu, J., L. Li, Y. Bi, J. Tao, J. Lochala, D. Liu, B. Wu, X. Cao, S. Chae, C. Wang, and J. Xiao, Locking oxygen in lattice: a quantifiable comparison of gas generation in polycrystalline and single crystal Ni-rich cathodes. Energy Storage Materials 2022, 47, 195-202.

(3) Hu, J., Y. Ji, G. Zheng, W. Huang, Y. Lin, L. Yang, and F. Pan, Influence of electrolyte structural evolution on battery applications: Cationic aggregation from dilute to high concentration. Aggregate 2022, e153.

(4) Hu, J., B. Wu, S. Chae, J. Lochala, Y. Bi, and J. Xiao, Achieving highly reproducible results in graphite-based Li-ion full coin cells. Joule 2021, 5, 1011-1015.

(5) Hu, J., L. Li, E. Hu, S. Chae, H. Jia, T. Liu, B. Wu, Y. Bi, K. Amine, C. Wang, J. Zhang, J. Tao, and J. Xiao, Mesoscale-architecture-based crack evolution dictating cycling stability of advanced lithium ion batteries. Nano Energy 2021, 79, 105420.

(6) Hu, J., H. Guo, Y. Li, H. Wang, Z. Wang, W. Huang, L. Yang, H. Chen, Y. Lin, and F. Pan, Understanding Li-ion thermodynamic and kinetic behaviors in concentrated electrolyte for the development of aqueous lithium-ion batteries. Nano Energy 2021, 89, 106413.

(7) Hu, J., Q. Wang, B. Wu, S. Tan, Z. Shadike, Y. Bi, M.S. Whittingham, J. Xiao, X.-Q. Yang, and E. Hu, Fundamental Linkage Between Structure, Electrochemical Properties, and Chemical Compositions of LiNi1–x–yMnxCoyO2 Cathode Materials. ACS Applied Materials & Interfaces 2021, 13, 2622-2629.

(8) Li, L., J. Hu, J. Xiao, and C. Wang, Origin, Nature, and the Dynamic Behavior of Nanoscale Vacancy Clusters in Ni-Rich Layered Oxide Cathodes. ACS Applied Materials & Interfaces 2021, 13, 18849-18855.

(9) Hu, J., W. Ren, X. Chen, Y. Li, W. Huang, K. Yang, L. Yang, Y. Lin, J. Zheng, and F. Pan, The role of anions on the Helmholtz Plane for the solid-liquid interface in aqueous rechargeable lithium batteries. Nano Energy 2020, 74, 104864.

(10) Hu, J., B. Wu, X. Cao, Y. Bi, S. Chae, C. Niu, B. Xiao, J. Tao, J. Zhang, and J. Xiao, Evolution of the rate-limiting step: From thin film to thick Ni-rich cathodes. Journal of Power Sources 2020, 454, 227966.

(11) Hu, J., W. Huang, L. Yang, and F. Pan, Structure and performance of the LiFePO4 cathode material: from the bulk to the surface. Nanoscale 2020, 12, 15036-15044.

(12) Kong, D., J. Hu, Z. Chen, K. Song, C. Li, M. Weng, M. Li, R. Wang, T. Liu, J. Liu, M. Zhang, Y. Xiao, and F. Pan, Ti-Gradient Doping to Stabilize Layered Surface Structure for High Performance High-Ni Oxide Cathode of Li-Ion Battery. Advanced Energy Materials 2019, 9, 1901756.

(13) Huang, W., J. Hu, L. Yang, W. Zhao, Z. Wang, H. Wang, Z. Guo, Y. Li, J. Liu, K. Yang, and F. Pan, Revealing the Degradation Mechanism of LiMnxFe1–xPO4 by the Single-Particle Electrochemistry Method. Acs Applied Materials & Interfaces 2019, 11, 957-962.

(14) Hu, J., H. Zeng, X. Chen, Z. Wang, H. Wang, R. Wang, L. Wu, Q. Huang, L. Kong, J. Zheng, Y. Xiao, W. Zhang, and F. Pan, Revealing Insights into LixFePO4 Nanocrystals with Magnetic Order at Room Temperature Resulting in Trapping of Li Ions. The Journal of Physical Chemistry Letters 2019, 10, 4794-4799.

(15) Li, Y., J. Hu, K. Yang, B. Cao, Z. Li, L. Yang, and F. Pan, Synthetic control of Prussian blue derived nano-materials for energy storage and conversion application. Materials Today Energy 2019, 14, 100332.

(16) Hu, J. and J. Zhang, Enhancing the Surface Stability of Ni-Rich Layered Transition Metal Oxide Cathode Materials. Chinese Journal of Structural Chemistry 2019, 38.

(17) Hu, J., J. Zheng, and F. Pan, Research progress into the structure and performance of LiFePO4 cathode materials. Acta Phys-Chim Sin. 2018, 34, 0001–0009

(18) Hu, J., Y. Xiao, H. Tang, H. Wang, Z. Wang, C. Liu, H. Zeng, Q. Huang, Y. Ren, C. Wang, W. Zhang, and F. Pan, Tuning Li-ion diffusion in a-LiMn1-xFexPO4 nanocrystals by antisite defects and embedded β-phase for advanced Li-ion batteries. Nano Letters 2017, 17, 4934-4940.

(19) Duan, Y., B. Zhang, J. Zheng, J. Hu, J. Wen, D.J. Miller, P. Yan, T. Liu, H. Guo, W. Li, X. Song, Z. Zhuo, C. Liu, H. Tang, R. Tan, Z. Chen, Y. Ren, Y. Lin, W. Yang, C.M. Wang, L.W. Wang, J. Lu, K. Amine, and F. Pan, Excess Li-ion storage on reconstructed surfaces of nanocrystals to boost battery performance. Nano Letters 2017, 17, 6018-6026.

(20) Hu, J., J. Yang, Y. Duan, C. Liu, H. Tang, L. Lin, Y. Lin, H. Chen, and F. Pan, The synergistic effect achieved by combining different nitrogen-doped carbon shells for high performance capacitance. Chemical Communications 2017, 53, 857-860.

(21) Yang, J., J. Hu, M. Weng, R. Tan, L. Tian, J. Yang, J. Amine, J. Zheng, H. Chen, and F. Pan, Fe-cluster pushing electrons to N-doped graphitic layers with Fe3C(Fe) hybrid nanostructure to enhance O2 reduction catalysis of Zn-Air batteries. ACS Applied Materials & Interfaces 2017, 9, 4587-4596.

(22) Hu, J., W. Li, Y. Duan, S. Cui, X. Song, Y. Liu, J. Zheng, Y. Lin, and F. Pan, Single-particle performances and properties of LiFePO4 nanocrystals for Li-Ion batteries. Advanced Energy Materials 2016, 7, 1601894.

(23) Hu, J., Y. Jiang, S. Cui, Y. Duan, T. Liu, H. Guo, L. Lin, Y. Lin, J. Zheng, K. Amine, and F. Pan, 3D-printed cathodes of LiMn1−xFexPO4 nanocrystals achieve both ultrahigh rate and high capacity for advanced lithium-ion battery. Advanced Energy Materials 2016, 6, 1600856.

(24) Zhuo, Z., J. Hu, Y. Duan, W. Yang, and F. Pan, Transition metal redox and Mn disproportional reaction in LiMn0.5Fe0.5PO4 electrodes cycled with aqueous electrolyte. Applied Physics Letters 2016, 109, 587-592.

(25) Tan, R., J. Yang, J. Hu, K. Wang, Y. Zhao, and F. Pan, Core-shell nano-FeS2@N-doped graphene as an advanced cathode material for rechargeable Li-ion batteries. Chemical Communications 2016, 52, 986-989.

(26) Hu, J., W. Li, C. Liu, H. Tang, T. Liu, Hua Guo, X. Song, J. Zheng, Y. Liu, Y. Duan, and F. Pan, The formation and mechanism of nano-monocrystalline γ-Fe2O3  with graphene-shell for high-performance lithium ion batteries. RSC Advances 2016, 6, 51777–51782.

(27) Hu, J., J. Zheng, L. Tian, Y. Duan, L. Lin, S. Cui, H. Peng, T. Liu, H. Guo, X. Wang, and F. Pan, A core–shell nanohollow-γ-Fe2O3@graphene hybrid prepared through the Kirkendall process as a high performance anode material for lithium ion batteries. Chemical Communications 2015, 51, 7855-7858.

(28) Tan, S., Z. Shadike, J. Li, X. Wang, Y. Yang, R. Lin, A. Cresce, J. Hu, A. Hunt, I. Waluyo, L. Ma, F. Monaco, P. Cloetens, J. Xiao, Y. Liu, X.-Q. Yang, K. Xu, and E. Hu, Additive engineering for robust interphases to stabilize high-Ni layered structures at ultra-high voltage of 4.8 V. Nature Energy 2022, 7, 484-494.

(29) Jin, Y., P.M.L. Le, P. Gao, Y. Xu, B. Xiao, M.H. Engelhard, X. Cao, T.D. Vo, J. Hu, L. Zhong, B.E. Matthews, R. Yi, C. Wang, X. Li, J. Liu, and J.-G. Zhang, Low-solvation electrolytes for high-voltage sodium-ion batteries. Nature Energy 2022.

(30) Kim, J.-M., Y. Xu, M.H. Engelhard, J. Hu, H.-S. Lim, H. Jia, Z. Yang, B.E. Matthews, S. Tripathi, X. Zhang, L. Zhong, F. Lin, C. Wang, and W. Xu, Facile Dual-Protection Layer and Advanced Electrolyte Enhancing Performances of Cobalt-free/Nickel-rich Cathodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2022.

(31) Li, Y., S. Xu, W. Zhao, Z. Chen, Z. Chen, S. Li, J. Hu, B. Cao, J. Li, S. Zheng, Z. Chen, T. Zhang, M. Zhang, and F. Pan, Correlating the dispersion of Li@Mn6 superstructure units with the oxygen activation in Li-rich layered cathode. Energy Storage Materials 2022, 45, 422-431.

(32) Zhang, X., H. Jia, L. Zou, Y. Xu, L. Mu, Z. Yang, M.H. Engelhard, J.-M. Kim, J. Hu, B.E. Matthews, C. Niu, C. Wang, H. Xin, F. Lin, and W. Xu, Electrolyte Regulating toward Stabilization of Cobalt-Free Ultrahigh-Nickel Layered Oxide Cathode in Lithium-Ion Batteries. ACS Energy Letters 2021, 6, 1324-1332.

(33) Wu, H., P. Gao, H. Jia, L. Zou, L. Zhang, X. Cao, M.H. Engelhard, M.E. Bowden, M.S. Ding, J. Hu, D. Hu, S.D. Burton, K. Xu, C. Wang, J.-G. Zhang, and W. Xu, A Polymer-in-Salt Electrolyte with Enhanced Oxidative Stability for Lithium Metal Polymer Batteries. ACS Applied Materials & Interfaces 2021, 13, 31583-31593.

(34) Lim, H.-S., W.-J. Kwak, S. Chae, S. Wi, L. Li, J. Hu, J. Tao, C. Wang, W. Xu, and J.-G. Zhang, Stable Solid Electrolyte Interphase Layer Formed by Electrochemical Pretreatment of Gel Polymer Coating on Li Metal Anode for Lithium–Oxygen Batteries. ACS Energy Letters 2021, 6, 3321-3331.

(35) Li, Z., Y. Li, M. Zhang, Z.-W. Yin, L. Yin, S. Xu, C. Zuo, R. Qi, H. Xue, J. Hu, B. Cao, M. Chu, W. Zhao, Y. Ren, L. Xie, G. Ren, and F. Pan, Modifying Li@Mn6 Superstructure Units by Al Substitution to Enhance the Long-Cycle Performance of Co-Free Li-Rich Cathode. Advanced Energy Materials 2021, 11, 2101962.

(36) Li, Y., S. Chen, S. Xu, Z. Wang, K. Yang, J. Hu, B. Cao, W. Zhao, M. Zhang, L. Yang, and F. Pan, Impact of Electrolyte Salts on Na Storage Performance for High-Surface-Area Carbon Anodes. ACS Applied Materials & Interfaces 2021, 13, 48745-48752.

(37) Jia, H., X. Zhang, Y. Xu, L. Zou, J.-M. Kim, P. Gao, M.H. Engelhard, Q. Li, C. Niu, B.E. Matthews, T.L. Lemmon, J. Hu, C. Wang, and W. Xu, Toward the Practical Use of Cobalt-Free Lithium-Ion Batteries by an Advanced Ether-Based Electrolyte. ACS Applied Materials & Interfaces 2021, 13, 44339-44347.

(38) Chae, S., W.-J. Kwak, K.S. Han, S. Li, M.H. Engelhard, J. Hu, C. Wang, X. Li, and J.-G. Zhang, Rational Design of Electrolytes for Long-Term Cycling of Si Anodes over a Wide Temperature Range. ACS Energy Letters 2021, 6, 387-394.

(39) Cao, X., P. Gao, X. Ren, L. Zou, M.H. Engelhard, B.E. Matthews, J. Hu, C. Niu, D. Liu, B.W. Arey, C. Wang, J. Xiao, J. Liu, W. Xu, and J.-G. Zhang, Effects of fluorinated solvents on electrolyte solvation structures and electrode/electrolyte interphases for lithium metal batteries. PNAS 2021, 118, e2020357118.

(40) Li, Y., L. Xie, Z. Zheng, Z.-W. Yin, J. Li, M. Weng, J. Liu, J. Hu, K. Yang, G. Qian, B. Cao, Z. Li, S. Xu, W. Zhao, S. Li, J. Sun, M. Zhang, and F. Pan, Hybridizing Li@Mn6 and Sb@Ni6 superstructure units to tune the electrochemical performance of Li-rich layered oxides. Nano Energy 2020, 77, 105157.

(41) Bi, Y., J. Tao, Y. Wu, L. Li, Y. Xu, E. Hu, B. Wu, J. Hu, W. Wang, J.-G. Zhang, Y. Qi, and J. Xiao, Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode. Science 2020, 370, 1313-1317.

(42) Wang, Z., J. Hu, L. Han, Z. Wang, H. Wang, Q. Zhao, J. Liu, and F. Pan, A MOF-based single-ion Zn2+ solid electrolyte leading to dendrite-free rechargeable Zn batteries. Nano Energy 2019, 56, 92-99.

(43) Miao, P., R. Wang, W. Zhu, J. Liu, T. Liu, J. Hu, S. Li, Z. Tan, A. Koda, F. Zhu, E. Feng, Y. Su, T. Kamiyama, Y. Xiao, and F. Pan, Revealing magnetic ground state of a layered cathode material by muon spin relaxation and neutron scattering experiments. Applied Physics Letters 2019, 114, 203901.

(44) Li, Y., J. Hu, Z. Wang, K. Yang, W. Huang, B. Cao, Z. Li, W. Zhang, and F. Pan, Low-Temperature Catalytic Graphitization to Enhance Na-Ion Transportation in Carbon Electrodes. Acs Applied Materials & Interfaces 2019, 11, 24164-24171.

(45) Li, H., H. Wang, W. Ren, J. Hu, Y. Lin, and F. Pan, A new single-particle model to evaluate the Li-ions diffusion coefficients of LiMn1−xFexPO4. Functional Materials Letters 2019, 12, 1950071.

(46) Kong, D., M. Zhang, Y. Xiao, J. Hu, W. Zhao, L. Han, and F. Pan, Insights into the structural evolution and Li/O loss in high-Ni layered oxide cathodes. Nano Energy 2019, 59, 327-335.

(47) Zheng, J., G. Tan, P. Shan, T. Liu, J. Hu, Y. Feng, L. Yang, M. Zhang, Z. Chen, Y. Lin, J. Lu, J.C. Neuefeind, Y. Ren, K. Amine, L.-W. Wang, K. Xu, and F. Pan, Understanding Thermodynamic and Kinetic Contributions in Expanding the Stability Window of Aqueous Electrolytes. Chem 2018, 4, 2872-2882.

(48) Zhao, Y., L. Yang, D. Liu, J. Hu, L. Han, Z. Wang, and F. Pan, A conductive binder for high-performance Sn electrodes in lithium-ion batteries. ACS Applied Materials & Interfaces 2018, 10, 1672-1677.

(49) Wang, Z., Z. Wang, L. Yang, H. Wang, Y. Song, L. Han, K. Yang, J. Hu, H. Chen, and F. Pan, Boosting Interfacial Li + Transport with a MOF-Based Ionic Conductor for Solid-State Batteries. Nano Energy 2018.

(50) Wang, Z., R. Tan, H. Wang, L. Yang, J. Hu, H. Chen, and F. Pan, A metal-organic-framework-based electrolyte with nanowetted interfaces for high-energy-density solid-state lithium battery. Advanced Materials 2018, 30, 1704436.

(51) Wang, H., L. Liu, R. Wang, X. Yan, Z. Wang, J. Hu, H. Chen, S. Jiang, L. Ni, H. Qiu, H. Tang, Y. Wei, Z. Zhang, S. Qiu, and F. Pan, Self-Assembly of Antisite Defectless nano-LiFePO4@C/Reduced Graphene Oxide Microspheres for High-Performance Lithium-Ion Batteries. ChemSusChem 2018, 11, 2255-2261.

(52) Shan, P., D. Kong, J. Hu, H. Wang, Z. Wang, L. Yang, H. Chen, and F. Pan, In-situ activation for optimizing meso-/microporous structure of hollow carbon shells for supercapacitors. Functional Materials Letters 2018, 11, 1850049.

(53) Liu, C., J. Hu, L. Yang, W. Zhao, H. Li, and F. Pan, Low-surface-area nitrogen doped carbon nanomaterials for advanced sodium ion batteries. Chemical Communications 2018, 54, 2142-2145.

(54) Yang, X., M.J. Zhang, Y. Min, M. Xu, Z. Mei, J. Liang, J. Hu, S. Yuan, S. Xiao, Y. Duan, F. Liu, H. Lin, Y. Lin, and F. Pan, Controllable formation of (004)-orientated Nb:TiO2 for high-performance transparent conductive oxide thin films with tunable near-infrared transmittance. ACS Applied Materials & Interfaces 2017, 9, 29021-29029.

(55) Yang, J., J. Hu, M. Zhu, Y. Zhao, H. Chen, and F. Pan, Ultrahigh surface area meso/microporous carbon formed with self-template for high-voltage aqueous supercapacitors. Journal of Power Sources 2017, 365, 362-371.

(56) Wang, H., R. Wang, L. Liu, S. Jiang, L. Ni, X. Bie, X. Yang, J. Hu, Z. Wang, H. Chen, L. Zhu, D. Zhang, Y. Wei, Z. Zhang, S. Qiu, and F. Pan, In-situ self-polymerization restriction to form core-shell LiFePO4/C nanocomposite with ultrafast rate capability for high-power Li-ion batteries. Nano Energy 2017, 39, 346-354.

(57) Tang, H., J. Yang, G. Zhang, C. Liu, H. Wang, Q. Zhao, J. Hu, Y. Duan, and F. Pan, Self-assembled N-graphene nanohollows enabling ultrahigh energy density cathode for Li-S batteries. Nanoscale 2017, 10, 386-395.

(58) Guo, H., H. Ping, J. Hu, X. Song, J. Zheng, and F. Pan, Controllable synthesis of LiFePO4 in different polymorphs and study of the reaction mechanism. Journal of Materials Chemistry A 2017, 5, 14294-14300.

(59) Ren, W., K. Wang, J. Yang, R. Tan, J. Hu, H. Guo, Y. Duan, J. Zheng, Y. Lin, and F. Pan, Soft-contact conductive carbon enabling depolarization of LiFePO4 cathodes to enhance both capacity and rate performances of lithium ion batteries. Journal of Power Sources 2016, 331, 232-239.

(60) Peng, H., R. Li, J. Hu, W. Deng, and F. Pan, Core-shell Sn-Ni-Cu-alloy@carbon nanorods to array as three-dimensional anode by nanoelectrodeposition for high-performance lithium ion batteries. ACS Applied Materials & Interfaces 2016, 8, 12221-12227.

(61) Liu, T., Y. Duan, G. Zhang, M. Li, Y. Feng, J. Hu, J. Zheng, J. Chen, and F. Pan, 2D amorphous iron phosphate nanosheets with high rate capability and ultra-long cycle life for sodium ion batteries. Journal of Materials Chemistry A 2016, 4, 4479-4484.

(62) Lin, Q., Y. Su, M.J. Zhang, X. Yang, S. Yuan, J. Hu, Y. Lin, J. Liang, and F. Pan, A novel p-type and metallic dual-functional Cu-Al2O3 ultra-thin layer as the back electrode enabling high performance of thin film solar cells. Chemical Communications 2016, 52, 10708-10711.

(63) Guo, H., X. Song, Z. Zhuo, J. Hu, T. Liu, Y. Duan, J. Zheng, Z. Chen, W. Yang, K. Amine, and F. Pan, Storage and effective migration of Li-ion for defected β-LiFePO4 phase nanocrystals. Nano Letters 2016, 16, 601-608.

(64) Zheng, J., Y. Hou, Y. Duan, X. Song, Y. Wei, T. Liu, J. Hu, H. Guo, Z. Zhuo, L. Liu, Z. Chang, X. Wang, D. Zherebetskyy, Y. Fang, Y. Lin, K. Xu, L.W. Wang, Y. Wu, and F. Pan, Janus solid-liquid interface enabling ultrahigh charging and discharging rate for advanced lithium-ion batteries. Nano Letters 2015, 15, 6102-6109.

(65) Liu, T., Y. Feng, Y. Duan, S. Cui, L. Lin, J. Hu, H. Guo, Z. Zhuo, J. Zheng, Y. Lin, W. Yang, K. Amine, and F. Pan, Formation of mono/bi-layer iron phosphate and nucleation of LiFePO4 nano-crystals from amorphous 2D sheets in charge/discharge process for cathode in high-performance Li-ion batteries. Nano Energy 2015, 18, 187-195.

(66) Fan, H., J. Zheng, J. Hu, Y. Su, N. Zhao, J. Xu, F. Liu, and F. Pan, Controllable preparation of hierarchical ZnO nanocages and its oxygen vacancy through the nanoscale kirkendall process. Particle & Particle Systems Characterization 2015, 32, 771-778.

(67) Duan, Y., J. Zheng, N. Fu, J. Hu, T. Liu, Y. Fang, Q. Zhang, X. Zhou, Y. Lin, and F. Pan, Effects of Ga doping and hollow structure on the band-structures and photovoltaic properties of SnO2 photoanode dye-sensitized solar cells. RSC Advances 2015, 5, 93765-93772.

联系方式